Billy Lam

411 (mathematical method for optics)
) 1 dmfl
o= Reseen SO = I G g
¢V (20)

= NTE (¢ non zero at zp.)

((z = 2)"™ f(2))

tensor(rank)

tensors?, stress teasor.

outer product gives u tensors

rank: O - scalar, 1 - vector, 2 - N x Nmatriz, > 3 - tensor

einstein notation

dot product: invariance to rotations. a - b = ||al|||b||cos €

einstein notation: sum over repeated indices is implicit: A -B = A;B;
indices cannot appear more than twice within a term.

"free” indices

A x B = ||A][||B]|sin

0 (i==j)U(==kU(k==1)
Eijk = 1 (1, 2, 3)
1 (3,2,1)
6il 5im §1n
€ijk€imn = | O0jl  Ojm  Ojn
Okt Okm  Okn

€rij€lim = (0i105m — Oimdj1)

€ijk€ijm = 20km

{4 XA(_BAX l} f ei'jkAijlmBlC = EkiijlmAjBlC = (5il5jm — 5im5jl)AjBlCm = BZA]C]
{B(A-C)-C(A-B)}i L o
{A- (B X C)}Z = AeijkBjCk = Biez‘j}chAk = {B(C X A)}z = CieijkAjBk = {C (A X B)}l
{A® B};; = A;B;
N N Bw
A-B=(A; Ay A.) | By
B.
- A, A.B, A.B, A,B.
outer product; A B=| A, | (B, By B,)=| A,B. A,B, A,B,
A, A.B, A.B, A.B,

{V X A}z‘ = eijkaixjAk
(Jacobian matrix) {V ® E}” =

9]
2 A
directional derivative: (¢-V)A=¢-(V® A)

derivatives
¢(r) scalar function of r

A(R) = (A (x,y,2), Ay(z,y, 2), AL (2,y, 2)) (vector function of 7

— ClA]BJ =



meaningful derivatives - must have a meaning that doesn’t depend on x,y,z.

these derivatives always has to do with vector differential operator "nabla” or ”del”
Gradient (a vector)

V¢ = rate of changes of ¢(r) points in the direction of maximum change

particles tends to goes to higher intensity via the gradient (when laser shine on the particle)

Divergence - local density of net flux

A(r) .

Net ﬂ:lX = /SA(T)A do
Div[A(F)]dr = /S A-do
Div{A} =V - A(r)
i

Curl - local density of circulation
curl{A} =V x A4

second derivatives

name vector notation | einstein notation
g 0 R
laplace V- (Vo) oz, 8ch¢ Ve
0
V x (ngﬁ) {V X (V(]S)}, = Gijkaiaixkqﬁ =0
. 0 3 2?¢
Hessian Ve (V) (Ve (Vo) = aiaTch’ 0x,0z;
. — =, 0J 0
Grad-Div V(V-A) {V(V-A)}; = 9z: O,
Div.Curl V- (V x A) (V- (VxA)}=eijp——o 09 A =0
0z, 0z,
B . . - -~ 0 K J 9 2731
Curl.Curl = Grad.Div-Laplacian | V x (V x A) {(Vx(Vx A} = 92 90,7~ Bu, 0 —A, ={V(V- A) V2A},
Laplacian acting on a vector V- (V® E) {V-(V® E)}Z _ 29 A; =V2A
Ox; Ox;
{(Vx (Ve A)} =
{(Va (Ve A)} =

Vipq]l = ¢V + ¢Vq

scalar times vector:
—
ox; ox;

(V- (pA)); = i_(aﬁAi) —¢
oA, 96 .

{v X (¢A)} - 6ljk: 0 (¢A ) 62]k¢ + emka Ak: = V x (¢A) = (bv X E—’— (V(ZS) x A
]

04Ai 4 5¢ = V- (pA)=¢V-A+A-Vé

vector times vector:

N o 9 N S o
(VA B} = 5 -(4;B)j) = Ay -B; + Bj A = V(A-B)=(V®B) - A+(V®A)-B
IR ‘9 ) - N
{V . (A X B)} = 92, (kaA Bk) = EljkBka A + GljkA a Bk =D - (V X A) —A- (V X B)
- = 0 0 0 0 0
{V X (A B)} = 6”’68 JeklmAlB = ekijﬁklm< ma%Al—‘rAla%Bm) = B a A + A 8 z; j —
0] 8
8 A —4 6

:>V><(A B) = ( V)E+A(V.B)—B(V-A)—(E.V)§



Fundamenta}) Theorem of calculus
) [ =10 - fa)
Def Deriv.  f'(z)Az = f(z + Az) — f(z)
b N-—-1
f)ef Int. /a F(z)dx = Al;rgo nz::o F(z,)Ax (zrn, = a+nlx)
(3D)
Vo AF = o(F + A) - 6(7)

Integral along path (line integral): / F(r)- d\ = lim ﬁ(

N

T AXn—0 p1

UEE) =V
[ vo-di= tm Y Vo) Ak, = o) - o)

A/\n —0 n=0 N N
S(rn+1)—d(rn)

Def. of Div. V- AAT = A-do
S of At

/T fr)dr = Alffioz F(rn) AT,

it £(7) = V- A7)

/v.deT: A-dr

T S of AT

Def: (V x A)- A = CA-dx
C of Ao

/(v x A)-do = lim Y Vx AP,) - AG, :j{
S Aop,—0 ", ————— C of Ao

o
3
>

Ty IR
| Vo dx=o) - o)
F. T. of Divs. (Gauss’ Theorem)

F.T. of Curls (Stokes’ Theorem) / (V x A)-do = A-dx
S

functions of complex variables

complex functions of complex varibles

£(2) = u(z,y) + vz, y)

derivative

dz = dzx + idy

f(z)dz = Re{f'}dx — Im{f'}dy + i(Im{f'}dx + Re{f'}dy)

RHS f(z+dz)— f(2) = w(z+dz, y+dy) —u(z, yy) +i[v(z+dz, y+dy) —v(z, y)] = deu, +dyuy +i[devg +dyv,
LHS = RHS Vdxdy

Uy = Uy, Uy = —V, Cauchy-Riemann conditions.
existence of f’(zp) requires u, = vy, u, = —v, at point z.
Write
Oudx Oudy Ooudx  Oudy
Uy = — and for v too

“ozor “oyor™ " 9z00 oy o6

its called Cauchy-Riemann equations, but equality doesn’t imply existence of f’(zp).
first order partial derivative of u,v with respect to z,y (r, ) exist everywhere in the neighborhood, and are



continuous at (xo,yo) and satisfy Cauchy-Riemann equations
Uy = Uy, Uy = —Vp TUr = Vg, Uy = —TU;

at that point.

Then f/(z0) exist, its value being f(z0) = g + iv, = e~

Uy + 90,

analytic functions.

analytic in an open set S if derivative everywhere in that set.

analytic at a point zq if it is analytic in some neighborhood of zj.

entire function(holomorphic) - function that is analytic at each point in the entire plane.

analytic in domain D requires continuity, first order partial derivative of u, v with respect to x,y (r,0) exist
everywhere in the neighborhood, and are continuous at (xg,yo) and satisfy Cauchy-Riemann equations.

if two functions are analytic in a domain D, their sum and product are both analytic in D., quotient too
(when denominator # 0.

composition of 2 analytic functions is analytic

singular point zq - fails to be analytic at that point, but is analytic at some point in every neighborhood of
2220

an analytic function from a well behaved function of a real variable x by replacing = with z

integral

integrate counterclockwise §, f(z)dz = f (u + i) (dx + idy) = %
c c

—

(vdx 4+ udy) = 7{ A-
C

(uda — vdy) + i f

c
d)\—i—ij{B-d)\
c

Stoke’s theorem — VxA-do+ z/
S inside C S inside C

= ov  Ou ou Ov
B}.dzd :/ <—>dxd +i/ <—)dxd
J Y sinc \O0r Oy Y sinc \O0z Oy Y

= 0 due to C-R conditions

V><§~d3:/

{V x A}.dedy + z/ {V x
Sin C

Sin C

f(z) ana
2m
ﬁdz. Make C' a circle around zg as small as possible. Mdz = / if(2)d0 = 2mif(z)
c R — 20 Cc ?— R0 0

function f and its conjugate are both analytic — f(2) = cg + ic;.

Harmonic: in given domain, has continuous partial derivatives of the 1, 2"¢ order and satisfy Laplace’s eq.
Second way to prove harmonic: f(z) = u(x,y) + iv(x,y) is analytic in a domain D, then w,v are harmonic
in D.

Laplace’s eq. uzg + uyy = 0, function v too.

r2Upy + T, + ugg = 0, function v too.

Reflection principle

f(z) = f(z), On real axis f(z) = f(z)

—e* = e® everywhere in the z plane, e* is entire.
z
periodic by 27i.
e* can be negative!.
output of e* can be any non-zero complex number.
log z = Log z + 2nmi Log z =Inr 410
Notice, the function is log, not In! (dont make sense but it’s defined this way)

d 1
—logz = — z#0,a<arg z < a+2mw
dz z



For Log z, Arg z € {—m, 7}, domain slightly diff.
log(z122) = log z1 + log 22
arg(z122) = argzi + argzs

z # 0, ¢ any complex number. power function
2¢ = eclosz z #0.
can be multiple-valued.

d
— ¢ =zl
Yi d
—c* =c*loge, or —2z¢ = 2°log z.
dz dc
Zeros of sin, cos are the zeros of real line.
. e’LZ _ e—lZ eZZ _"_ e—lZ
sing = ————,co82 = ————
2i ’ 2
) Y — eV €Y+ eV

cosh?y —sinhy? =1

sin z = sinx cosh y + 7 cos x sinh y

cos z = coscoshy — isinx sinhy

where z = x + iy

sin z, cos z not bounded on complex plane.
|sin 2|2 = sin® & 4 sinh?

| cos z|? = cos? & + sinh? y

- sinh z = cosh z, i cosh z = sinh z
—isinh(iz) = sin z, cosh(iz) = cos z

—isin(iz) = sinh z, cos(iz) = cosh z

zeros of sinh at i(nm), zeros of cosh at i(nw + F).
—isinh(iz) = sin z, cosh(iz) = cos z

hyperbolic functions periodic with period 2mi.
sinh(—z) = — sinh z, cosh(—z) = cosh z

cosh? z —sinh? z = 1

sinh(z1 + 22) = sinh z; cosh z5 + cosh z sinh 2z
cosh(z1 + z2) = cosh z; cosh z9 + sinh 21 sinh 29
sinh = sinh z cosy + i cosh x sin y

cosh z = coshxz cosy + ¢sinh xsiny

| sinh 2|2 = sinh?  + sin? y

| cosh z|? = sinh? z 4 cos? y

sinhz =0iff z = nm%

coshz =00 iff z = (5 +n7r> i

— tanh z = sech? z, — coth z = — csch® 2
dz dz

— sech z = —sech z tanh z, — csch z = — c¢sch z coth 2z
dz dz

inverse tri, hyperbolic
sin™!z = —ilogliz + V1 — 22
cos!z = —ilog[z +iV1 — 22]

1 7 1+ z
tan™ " 2z = — log -
7

—z
they are multiple-valued
d . 4 1

Sin z

dz :\/1—22



d V1—22
1

—tanlz =

P an~ - z 52

sinh ™ z = log[z + V22 + 1]

cosh™ 2z = log[z 4+ V22 — 1]
1 1

tanh™ z = = log tz
2 1-=2

w'(t) = u'(t) + v/ (t) (1)

* mean value theorem no longer apply.

b b b
/ w(t)dt = / w(t)dt +i/ o(t)dt
existence of infclegral ensured if functions are piecewise continuous.
mean value theorem for integral doent apply either.

Arc - is simple if it does not cross itself.
simple closed curve, Jordan curve. Positively oriented if in counterclockwise direction.
contour - piecewise smooth arc.

line integral ,
ez [ sanz @
/C 20 f(2)dz = 2 /C f(=)dz

| </ " ot

/a " byt

<M= \ |RCE

<ML

Cauchy-Goursat theorem
if f analytic at all points interior 2 and on a simple closed contour C, then / f(z)dz = 0. converse also
c

true.
analytic throughout a simply connected domain, then true for every closed contour C' lying in D. f has
antiderivative everywhere in D.

analytic on and within C, zy any point interior to C.

flao) = 5 [ LEE
0 27 Jo 2 — 20
z)dz )
; ];(—)Zo = 2mif(z0)
! dz
Wy = [ _fR)dz N
" (20) 2'7ri /C (;(_)ZC?)nH n € No
n! s)ds
f(n)(z) =5 /C 7(8 e n € Ny
f analytic at zg = its derivatives of all orders are analytic at zy too
M
|f(™) (20)] < anR n € N where Mp = maximum value of |f(z)| on Cg



Liouville’s theorem
If a function f is entire and bounded in complex place, then f(z) is constant throughout the plane.

fundamental theorem of algebra
Any polynomial with degree n < 1 has at least 1 zero.

If f is analytic and not constant in a given domain D, then |f(z)| has no maximum value in D.

Taylor series (complex)

flz)= Z an(z — 2z9)" (over n!)
n=0

negative power of (z — zp)
e”, compose with (z 4+ n), multiply by by e™ and taylor expand.

Laurent’s theorem
f analytic on annular domain, C' (4) closed contour in that domain. Then at each point on the domain,

[e%e) . [e’e] bn
f(Z) = TLEZ:OG,”(Z — Z()) + nzz:l m
1 f(z)dz
= omi /c (2 — z0)"+1

1 f(z)dz
= g

o0

Z en(z —20)"

1 f(z)dz
270 Jo (2 — zp) !

~

—
0

~—
Il

uniform convergence of Taylor series - all points on the largest circle centered at zj.

multiplication of power series
n

@I =3 (1)@ 6 nen

k=0

= SW20) g M(20) O
= (n—k)! =D abu-i
k=0 k=0
residue

singular point zg is isolated if these is a deleted e neighborhood of zy throughout which f is analyic.
f(z)dz = 2mwiby = 2miRes,—, f(2)

Res,—., f(z) is power series in functions of z — zg
Partial fraction can help
point at infinity is said to be an isolated singular point of f.

Resz:oof(z) = —Res.=o (ZIQf (i))

Removable (all negative power of z — zy are 0), essential (infinitely many nonzero negative power of z — zp)
, or a pole (finite nonzero negative power of z — zg, largest negative power m means pole of order m).
Picard’s theorem - each neighborhood of an essential singular point, a function assumes every finite value,



with one possible exception, an infinite number of times.
residue at poles

Zp is a pole of order m of f. equivalent to

f(2) can be written in the form

¢(2)
z) = meN
where ¢(z) is analytic and nonzero at zg.
R F(2) = ¢ (z)
N (O}

zero of order m at zo: f(20) = ... = f(" "D (2) = 0, f(™)(20) # 0
if f(z) = pgzi where singularity at zo, if p(29) # 0, ¢(z0) = 0,4’ (20) # 0, then Res,—,,f = p/((zo))

alz qa'\zo

if f analytic at zg, f(20) =0 but f(z) is not identically equal 2 zero in any neighborhood of zy.
Then f(z) # 0 throughout some deleted neighborhood of z.

if f analytic throughout neighborhood Ny of zg, f(z9) = 0 at every point in domain D or line segment L
containing zp, then f(z) =0 in Ny
Then f(z) # 0 throughout some deleted neighborhood of zy.

if zyp a removable singular point of f, then f is bounded and analytic in some deleted neigh € of zj.

f bounded, analytic in deleted € neigh of zy. If f is not analytic at zg, then it has a removable singularity
there.

essential singular point: in each deleted neigh of the ESP, f assumes values arbitrarily close to any given
number.

if zg is a pole, then lim f(z) = co.
zZ—r2z0

- )
/ f@yde+ [ f2)dz=2m0Y Res.—., f(2)
—R Cr k=1

CRr semi-circular arc, zj are singu_lar points inside the semi circle.
Cauchy principal value (P.V.)

P.V. /00 flx)dx = ngn f(z)dz

The in;proper integral doesnt always converges even if its P.V. exists.

For a simple pole on x-axis, lim / f(2)dz = —Bymi
p—0 c,

if all singularity on one side of the x-axis, we can make a contour with two concentric circles connected by
a line along the x-axis.

definite integral with sin,cos
27

_ -1 —1
F(Siﬁﬁ,COSG)dﬁz/F(Z - 7Z+Z )dz
o 2 2

7 12

argument principle

meromorphic in domain D if analytic throughout except poles.
if f meromorphic in D interior to C, analytic and nonzero on C, then winding number

1
r= %Acarg fz)=Z-P

where Z is the number of zero, P number of poles of f inside C, counting multiplicities.



rouche’s theorem
f, g analytic inside, and on C, |f(2)| > |g(z)| at each point on C.
Then f(2), f(z) + g(z) have the same number of zeros, counting multiplicities inside C

branch point: points that cause that function to be multi-valued. f(z) can be finite/infinity at branch points.
At branch points, if we close an arbitrarily small loop around that point, it travels and end up at a different
value.

branch cut: 1/z has 2 Riemann sheets. The whole thing is a Riemann surface.

if taylor expand /z at zp > 0, uniform convergence in the circle of radius 2z centered at z

Product of fractional powers.

f(2) = VZ 1= (s~ )iz +1)}

branch point at +1

branch cut: (—1,1) or (—oo,—1) U (1, 00)

In general f(z) = (z — z9)™ where the fraction is irreducible. function has m riemann sheets

f(2) = (2 — 20)*(2 — 22)%(2 — 23)” # riemann sheets is lowest common denuminator of a, 3,y

if a+ 8+~ ="Z - can join the branch points with finite branch cut.

sums: f(z) =+vz— 1+ +/z+ 1 has 4 Riemann sheets.

# of Riemann sheets is the product of the number of Riemann sheets for each. term

Poles: points where function diverge but doesn’t cause multivalue.

f(2) has finitely many negative powers of (z — z9)™

Essential singularity: infinitely many negative powers of (z — zp)™

Laurent Series
Starting from CIF f(z) = fz )

27i c ? - z
f analytic inside and along C.
connected contour of different circle with r, R .
if all singularities inside C,. are not branch points or if they include branch pts, but these can be joined by
a finite branch cuts. Then the contour integral is just the two circle line integrals (closed)).

(and opposite direction)

RN CIVRR S o CVREE S e
2mi Jo, 2 =2 2mi Jo, 2 — 2 27t Jo. (21— 20) — (2 — 20) 21t Jo. (2" — 2z0) — (2 — 20)
_ ) 1 / fiZ) 1 /
- 2 1 z—20 + 2 / 1 zZ—20 d
mi Jo, 2 =201 - 22 mi Jo, 2 — 201 — 22
1 z") 1 ") (z—2
= — dz
ZQm’ Cn z/—z()( —ZO> +Z2m c. 2 — 20 (z’—zo

_fE) 1 ') )
— — 2)" A o
Z 2mj{ (2 = zo)”"r1 (2= 20)" + Z 2mi Jo, (2 — 20) ”‘H (2

o b [ S
"o Jo (2 — zo)n Tt



we can find a LS around a pole.
Taylor series on the region of circle centered at origin with radius reaching first singularity.
Laurent series on other regions (but if there’s branch points, laurent series may not be valid).
1
-21+ 25
remember technique: when zg is in middle between singularity, partial fraction is not needed.
f(z) =vz* —4 expand at zp =0
2

2| < 2, f(z) = +i 1—%

Use binomial expansion (1 +z)2 = ..

remember technique: |z — 2| > 1, f(z) =

/ f(2)dz = 2miby = 2miRes,—,, f(2)
c

Res,—,, f(2) is power series in functions of z — 2
Partial fraction can help
point at infinity is said to be an isolated singular point of f.

Res.— f(2) = —Res.—¢ <z12f <i>)

If all singularities inside C' are poles (not branch points), then the "bridge” subcontours cancel.

1 dm!
a_1 =Res.—, f(z) = Zgﬂgk WW ((z = 21)" f(2))

Res,—z, f(2) = lim (z — 20) f(2)

Pares
3 types ng integrals

L = / f(z)dx

Do this ?coype of integra} with semi circle with R — oo contour lying on x-axis.

f(z)dz=1, —|—i/ Rlim zf(z)df
o R—oo

Cr
1
if f(z) — 0 faster than — as z — oo
z
then I) = f(z)dz = 2mi Z Res{f(2),zr} = —2mi Z Res{f(2), zi}
Cr k above x-axis k below x-axis
example:
o dz d [ (z—ia)? ) . \_3 ™
‘/_OO m = 2m Zli}rl;la % <M = _47-(_7/(2 + Za) |7ia = ﬁ

I, = / f(x)e**de  keR
for e*** = e?**=ky For k > 0, use semicircle above x-axis.

For k < 0, use semicircle below x-axis.

exmaple: k > 0, % f(z Zkzd,z =1 — hm /

Second term — 0 1fM(R) — 0 as R%oo (f(z) = 0 as |z| = )

k>0: 2miRes {f eikz,Vzo} =1 (upper semi-circle)

k<0: —2miRes { f(2)e’**,Vzo} = I (lower semi-circle, negative sign cuz contour counterclockwise)

I:/ VT e a0
0 T°+a

R 1 27 1 i6 € i2m\ L
2d R2e> . i2m
Contour integral: lim / e + lim / .762'1%6’9(10—1— lim / & e dr 4+
R—o0 Jo

e—0,R—c0 J, 12+ a? R2ei20 1 g2 e—0,R—c0 Jp 127 + a2

0 1 i6

€2e2 .
hrn ﬁECZOdQ
e=0 Jor €27 +a

10



1 1 1

1 22 . 22 - 3m . 22

2l = 5 ¢ 5——dz = miRes{ 5——,ae"?,ae’ 2 » = mz —
2 Jcz+a z2+a 2z

o «
T
/ dz
0 (l’n + CL”)N(JCm + bm)M

ifn=m

o x
or if we just have / iz

o (a7 +a")

pizza slice containing first singularity.

(03

example

oo \/5
1= 24 42
0o x*+a
contour integral, upper semi circle, with bump at the origin.

1 1 .
. B radr . Crze’zdre’”
hm ﬁ - 0 + hm ﬁ
e=0,R—o0 J, T+ a e=0,R—o0 Jp 7€ +q
1

2

i . z i .1
=(1+4e2)= 277@Res{z+ ae'z » =miz"z[ .z

INE)

™ T
) = —€ 4 = ——€
? a2 \/a \/&
LHS is 2cos(z>el4l = = ——

V2a

R 27 €
f{ Inzf(z)dz = lim / In7f(r)dr+ lim In(Re®) f(Re®)iRe?df+  lim / In(re?™) f(re’®™)dre'*™ +
C €

e—0,R—00 R—o0 Jo e—0,R—o00

R

lim [ In(ee®)f(ee)iee®dd
e—=0 Jor

1 1
274 term goes — 0 if ft.—55 with 6 > 0 as |z[ — oo (f(2) goes — 0 faster than ——= as [z| = 00)
z

2110
4 term goes — 0 if f£(0) is well defined .
LHS becomes —27il = 2mi Z Res{inzf(z), zn} 0 € (0,2m)

example
 dx
I = / 3 a > 0, integral real, positive, o a2
0 T>+a

contour integral of In z f(z) with connected CC Cr, clockwise C,

R e :

1 Inr — 42 ,
lim / =" g+ lim / e L
a
€

e—0,R—o00

. Inz - o ibm Inz
—2mi = I:—ZReS{M;ae’3,an ,ae’iS}:—z:?)z2
Ina+i5 Ina+ir lna—i-ifg) 2

"~ 3v/3a2
definite integral with sin,cos, C' is unit circle
2 21 z+z1> dz

F(sin@,cos@)d@z/F(Z_, ,
C 21 2

0
_ /°° sinkz) 1 ( /°° et /°° e~ ike dw)
oo T 21\ J_ T oo X

i . 45
ae'3 ,aei27 qe’ 3

( 3a2e' 5 3a2ei?m 3a2etF

12

1 e—ikz
k>0 I =— O+27riRes{ ;0}>:7r
24 z
1 ezkz
k<O 1= % —2miRes ;0 = -7
i

11



b —el b
1 d d b
/ —dz = lim & + lim o fim 2= anything real depending on how €;,e2 — 0

—a T e—0 /., T €1,e2—0  Q€g

integral not well define (simple pole)

b —e b
d d d b
We can define the ”Principal value” integral P 2 lim < / a + / m) =In-
e T

o T =0\ J_, = a

1 simple pole on contour: P f f(z)dz = difference of 2 contour integral (leap over pole by semi circle.z =

20 + e€e'?
Laurentz series for the semi circle integral.

90 .
/ f(z)dz = hm (aeze +ag + aree’? + ) iee?do
O+

—/ ia_1df = —miRes{f(2), 20}
o+

pfcf(z)dz:gm' > Res{f(2),zn}+mi > Res{f(2),2n}

n inside C n along C'
If simple pole is along the corner of contour of 90°, then it only catch 1/4 of the residue.
Integral Use Contour Condition
/ f(z)dx ff 1 Cgr,l Cgr zf(z) > 0as R —
/ f(z)e**da % 2)e*dzz k>01Cgr, f<0:lCr f(z) = 0as|z| =
—o0 C
/ f(x)dx ?{ 2% f(z)dz pacman 29 f(2) — 0 faster thanz™! as |z| — oo,
c
/ f(z j{ Inzf(z)dz pacman f(2) = 0 faster than 2=, f
c
-1 _ 1 d
/ F(cosf,sin0)do j{ F (Z+Z ,Z c > i uc none
0 uc 2 21 1z
Residue theory to solve infite sums
S = Z fln 7{ f(2)g(2)dz where g has simple poles at Z
; (_) mcos(mz) cot(m2)
ryg(z) = ————F =7 TZ
v sin(mz)

Res{g(z),n} =1
Contour: square: C, : y =+ (n + ;) ,r == ( > lim f fz
n—oo

Contour integral = 0 if zf(2) — oo as |z] = 0o

Then 0 = Z Res{f(2)g(2),z1} + Z Res{f(2)g(z);n}
poles of f nzfoo—’_/
J(n)
S == Z Res{f(z)m cot(mz), 2.} hm zf(z) =0
poles of 21—
S = i o a>0
B S ot ta?
v
S = —Res {Mﬂ' cot(mz); iza} - coth(ma)

Gaussian 1ntegrals

I()—/ _7d£E
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o0 a;c2 o0 ay a(z?
Ig:/ e*de/ */dy—/ / *(ﬂl)x

> e’} —au |
2
change to polars: —/ / 2 rdrd@ = 271'/ e~ T rdr = 277/ e~y = 21 &
0 0 )
if Re{a} > 0, then I3 = n
a
| E
a
e (1,.’1)2
I, = / xe” 2 dx n is nonnegative integer
— o0
In=0dd =0

aa:2
integration by parts: dv = ze™ 2 dx,u = 2"
(oo}

__ax

o
e 2 n—1 o _az?
= — ! + / 2" e dx
— 00

a a

nll =n(n —2)(n—4)...
second method: —

a
(%) remember techniques: derivative, recursion.

(/UOO cos <bf§ > dx+z/ooo sin <b;2> dx) = Qm(c(oo) + isgnS (o))

if a = —ib

X be? o
10:/ e 2 dxo::2/ e 2
—00 0

2 .
T pisgn(b) %
0]
— (n_ 1)” 2i isgn(b) &
tTo@E VB

Fresnel integral
cornia spiral, S vs C plot.

Asymptotic estimation of integrals (stationary phase and saddle pt. methods.)
I / A(z)e™* @ dg

k ’large’

d
envelope function A, k large = oscillates a tons except when —¢ = 0. massive cancelation except near the

dx
"stationary points” x;, where ¢'(z;) =0
for one stationary point, © = xg + 7,dx = dr
o0

Az + T)eik‘b(mﬁﬂdr

— 00
expand A and ¢ in taylor series.

chosen=0

o0 72 . ’ ” 2
Iy = / [A(w0) + A'(w0)7 + A"(10) T + ... ] o)+ (@0)T+¢" @) 5+l g

—o0o
It turns out that leadlng terms result from using truncated up to 0** order of A and 2" order of ¢.

I, = A(o) 1k¢(ro)/ ik (@)% g

21
kl¢” (xo)|

if more tan 1 stationary points, just do summation

— A(mo)eik¢($0) ei%Sgn«ﬁ”(zO))

13



k large such that there are many oscillation b/w stationary points.
method of stationary phase.

¢(x;) — () > 21

how to get next order.
ik (8" (20) %) 73 3\ 2
expand (& 0% ) — 1+ ik <¢///3') _ kz <¢///3'>

e . 1" 72
= etkd(zo) / (a+ a4+ ar? + ...)eZk(¢ (20)77)

4 contribution of order k~3

L (p) :/ (5P Per
—o0

stat. pts. at x4 = +,/p only for p > 0
" =2x,¢"(x+) = £2,/p

contribution of second type - edge effects
b
I(k) = / A(z)e*®@) dx

a
assumes no stationary points b/w a,b

iko(x
cikd(@) L et
ikg' () dx
1 [ A d
I(k) = — —etko@g
W =% v @ v

d .
integration by part, dv = dfelk(z’(‘”)dx
x

1 JA®) ]’ 1 [PLAN
0= S| <5 [ ()
1

’({,C
b
I(k) = — [%eikw}ﬁow?)

condition - no stationary point b/w a,b, or stationary points far enough away frmo edge.
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