
Billy Lam

OPT 441 (Geometrical Optics)

ia =
yEmax

r
yEmax

is max height of ray at center of curvature?

ib = −ubz
r

z is distance from center of curvature 2 where b-ray cross axis.

nvac =
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n is a function of λ
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v
=
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A

nds

OPL Optical path length.
Geometrical wavefront - surface where the optical path length is some constant.
Snell’s law derived by fermat’s principle. (shortest time)
Fix point a, c. vary b
color: blue, yellow, yellow, red
element: hydrogen, helium, sodium , hydrogen
name: F, d, D, C
λ(nm) : 486.1, 587.6, 589.3, 656.3
—————
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εy(h, ρ, φ) = σ1ρ
3 cosφ+ σ2hρ

2(2 + cos 2φ) + (3σ3 + σ4)h2ρ cosφ+ σ5h
3 +

2W020ρy
n′u′a

odd cuz rotation sym εx(h, ρ, φ) = σ1ρ
3 sinφ+ σ2hρ

2 sin 2φ+ (σ3 + σ4)h2ρ sinφ+
2W020ρx
n′u′a

σn =
Sn

2n′u′a
= SnFNO

εz =
−1

ρyu′a
εy

Defocus εz =
−2W020

n′u′2a

= −8n′W020FNO
2

h ρ x-y symmetric εy, εx
Defocus 0 1 Y

SA 0 3 Y
Coma 1 2 N
AST 2 1 N
PTZ 2 1 Y
DIST 3 0 N

—————
aberration orders
linear: distortion
quadratic: astimatism, field curvature
cubic: coma
—————
path differential theorem
dOPL(x, y, z, x′, y′, z′) = n′(k′dx′ + L′dy′ +M ′dz′)− n(Kdx+ ldy +Mdz)
perfect point image: all image forming rays meet at a single point (or wavefronts are spherical)
wavefront : s′ · dr′ = 0
—————
ideal image
1 All rays from an object point converge 2 an image point. (”stigmatic” imaging)
object and image points are said to be conjugate.
2 images of all points in a plane ⊥ to the lens axis lie on a plane that is also ⊥ 2 the lens axis.
3 Transverse magnification is constant.
—————
light travels L to R.
+z to the right
ray in I: u > 0
ray in II: u < 0.
All distances are measured from a reference surface, such as a wavefront or a refracting surface. Distances
to the left of the surface are negative.
The refractive power of a surface that makes light rays more convergent is positive. The focal length of such
a surface is positive.
The distance of a real object is negative.
The distance of a real image is positive.
Heights above the optic axis are positive.
Angles measured clockwise from the optic axis are negative.
—————
paraxial form of snell’s law:
nu′ = nu− yc∆n = nu− yφ
object at infinite → u = 0
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f ′ =
n′

c∆n
Suppose image at infinite u′ = 0 tof =

n

c∆n

Def. optical power of a surface as φ ≡ c∆n =
n

f
=
n′

f ′
(unit length−1,c is curvature)

φthin len = φ1 + φ2

m =
l′

l
–

Paraxial transfer eq. y′ = y +
t

n
nu

General: n′ju
′
j = njuj − yjφj

yj+1 = y′j +
t′j
n′j
n′ju
′
j

φ =
n′

l′
− n

l
(lens eq.

1

f
=

1

o
+

1

i
)

—————
of axis points

refract: n′u′ = −n(y − y0)

l
− yφ

=
ny0

l
− n′y

l′

yi =
( n
n′

)( l′
l

)
y0

m =
n

n′
l′

l
(linear mapping)as objects get smaller, and aperture get smaller → paraxial imagery.
paraxial eq. generate an ideal imae
—————
Front principal plane, rear principal plane P ′. P, P ′ probably between the whole optical system.
rear focal length f ′ is the distance from P ′ to F ′ (can be ±).
Back focal distance (BFD) is the distance from V ′ (end of optical system) to F ′.
—————
location of principal planes
P ′V ′

n3
=

(
t2
n2

)
φ1

φ
PV

n1
= −

(
t2
n2

)
φ2

φ
φ1, φ2 surface powers, φ total thick lens power.
easier to trace paraxial ray (matrix) and find intersection.

if want to find focal length: f ′sys = − y1

u′sys
—————
Newton’s form of imaging relationship ff ′ = zz′

For magnification m = 1, ray striking front principal plane (at any angle and any height), will leave rear
principal plane at the same height.
—————
nodal points: ray in object space through the front nodal point leaves the lens at the rear nodal point at the
same angle. (points of unity angular magnification)
PN = f ′ − f
if f ′ = f or equivalently n′ = n, then N is at P .
—————
Matrix

P ′j =

(
y′j
n′ju
′
j

)
prime indicates on image side of surface.
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Translation matrix T, det(T ) = 1

Tj =

(
1

t′j
n′
j

0 1

)

Then Pj+1 = TjP
′
j

(
yj+1

nj+1uj+1

)
=

(
1

t′j
n′
j

0 1

)(
y′j
n′ju
′
j

)
Refraction matrix R,P ′j = RjPj , det(R) = 1

Rj =

(
1 0
−φj 1

)
P ′ = TkRk...R2T1R1T0P = MP (If we know 3 entries of M , we can solve for 4th using det)

M =

 1− t

n
φ1

t

n
t

n
φ1φ2 − φ1 − φ2 1− t

n
φ2


M =

 1− t2
n2
φ

t1
n1

+
t2
n2
− t1t2
n1n2

φ

−φ 1− t1
n1
φ


ABCD rule (also holds for Gaussian laser beams, radius of curvature treated as complex quantity though):−R

′

n′
=

A(−R
n ) +B

C(−R
n ) +D

The Gaussian constant (depending on how ppl define it) can mean Rk...R1

—————
plane shift by +t on the object space, plane +t′ in the image plane.(

ŷ′

n′u′

)
=

(
1 t′

n′

0 1

)(
A B
C D

)(
1 − t

n
0 1

)(
ŷ
nu

)
=

(
ŷ′

n′u′

)
=

(
A+ t′

n′C B − t
nA+

′

n′D − tt′

nn′C
C D − t

nC

)(
ŷ
nu

)
since the determinant = 1, M−1: swap A11, A22. swap + negate A12, A21.
—————

rear focal point: ray with nu = 0 cross axis in image space. ŷ′ =

(
A+

t′

n′
C

)
ŷ

Solve for t′ such that ŷ′ = 0: z′ = −n
′A

C
Front focal point: set n′u′ = 0, solve for t such that ŷ = 0

z =
nD

C
—————
principal plane

in general, the planes z = t, z′ = t′ are conjugate when B − t

n
A+

t′

n′
D − tt′

nn′
C = 0

magnification m : m = A+
t′

n′
C

principal planes are conjugate planes with

m = 1 ⇒ t′ =
n′(1−A)

C
(1)

to find t:

B +
t′

n′
D − t

n

(
A+

t′

n′
C

)
︸ ︷︷ ︸

=m=1

= 0 = B +
t′

n′
D − t

n

plug in eq (??)
t

n
= B +

D

n′
· n
′(1−A)

C

= B +
D(1−A)

C
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=
BC +D −AD

C

=
D − (AD −BC)

C

=
D − 1

C

∴ t =
n(D − 1)

C

plane z =
n(D − 1)

C
is the front principal plane.

plane z′ =
n′(1−A)

C
is the rear principal plane.

front focal length f =
n(D − 1)

C
− nD

C
= − n

C

rear focal length f ′ = −n
′(1−A)

C
− n′A

C
= −n

′

C

−C =
n

f
=
n′

f ′
⇒ c = −φsys

—————
start with ŷ = 0, find tt′ such that ŷ′ vanishes and u = u′

ŷ = 0 ⇒ ŷ′ =

(
B − t

n
A+

t′

n′

(
D − t

n
C

))
nu

n′u′ =

(
D − t

n
C

)
nu

set ŷ′ = 0, u = u′ ⇒ t =
nD − n′

C
; t′ =

n− n′A
C

z =
nD − n′

C
is the front nodal point

z′ =
n− n′A

C
is the rear nodal point

note that when n = n′, nodal points and principal points coincide.
—————
Given the matrix the optical systems (Matrix M) b/w planes z = 0, z′ = 0
important points values

F
nD

C

F ′ −n
′A

C

P
n(D − 1)

C

P ′
n′(1−A)

C

N
nD − n′

C

N ′
n− n′A

C
f − n

C

f ′ −n
′

C
?f measured from P , f ′ measured from P ′ (sign can change if there’s mirror). F, P,N measured from z = 0
(start of system), F ′, P ′, N ′ measured from z′ = 0 (end of system). (P = F + f, P ′ = F ′ − f ′)(Notice when
n = n′, P = N , P ′ = N ′.)
For matrix M , B = 0 ⇒ z = 0, z′ = 0 are conjugate and m = A.
A = 0 ⇒ z′ = 0 is at F ′, f = nB, f ′ = n′B
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D = 0 ⇒ z = 0 is at F and f = nB, f ′ = n′B
C = 0 ⇒ system is afocal. image of an infinitely distant object is also at infinity.
—————
word about thin lens

M = lim
t→0

(
1 0

−c2(1− n) 1

)(
1 t

n
0 1

)(
1 0

−c1(n− 1) 1

)
=

(
1 0

−(c1 − c2(n− 1) 1

)
φ = (c1 − c2)(n− 1)
all thin lenses with same value of (c1 − c2) are equivalent.
—————
mirror system

Refraction matrix R =

(
1 0

−c∆n 1

)
For reflection Rreflect =

(
1 0

2nc 1

)
—————
mirror example (in air)
ray (from left) hit mirror1, mirror2. mirror1 on the right of mirror2

t′1 is negative

After 2 reflection

(
y′

n′u′

)
=

(
1 0
−2c2 1

)(
1 −t′1
0 1

)(
1 0

2c1 1

)(
y
nu

)
—————
Entrance pupil: image of a stop that is formed in object space by the lenses that precede the stop (SA of
entrance pupil is based on the ray in (virtual) object space, the actual ray be larger than SA).
Exit pupil: image of a stop that is formed in image space by the lenses following the stop (SA based on ray
in (virtual) image space).
aperture stop , entrance pupil, exit pupil are all conjugate.
when aperture stop lies physically in object space ⇒ stop corresponds with entrance pupil.
—————
lens (n = n′ = 1):

(
y′

u′

)
=

(
1 t′1
0 1

)(
1 0
−φ 1

)(
1 t′0
0 1

)(
y
u

)
=

(
1− t′1φ t′0 + t′1 − t′0t′1φ
−φ 1− t′0φ

)(
y
u

)

conjugate occur when B = 0⇒ m = A, t′0 =
−t′1

1− t′1φ
t′0 < 0⇒ entrance pupil lies to the right of the lens ⇒ virtual entrance pupil.
1) stop at lens - entrance and exit pupils also at lens
2) stop b/w lens and F ′, virtual entrance pupil
3) stop at F ′, entrance pupil at infinity
4) stop following F ′, real entrance pupil
telecentric in object space - entrance pupil at infinity.
telecentric in image space - exit pupil at infinity.
Doubly telecentric - both at infinity.
—————
Given matrix M of a system. To see its effect on all kinds of ray: we take linear independent ray

⇀

A,
⇀

B. The
effect of any other rays is c0

⇀

A+ c1
⇀

B = M(c0
⇀

A+ c1
⇀

B)
—————
Marginal ray (axial ray, a ray) - ray from axial object point passing through the edge of the aperture stop
Chief ray (principal ray, b ray) - a ray from the edge of the field (Edge of the object) passing through the
center of the aperture stop.
—————
SA = |ya|+ |yb|

6



—————
y+2 = ya2 + yb2 y−2 = −ya2 + yb2
beam diameter = y+2 + y−2 = 2|ya2|
—————
vignetting factor - how much of the diameter of the beam is outside the lens aperture, as a fraction of the
beam diameter.

V ± =
1

2
− SA− |yb|

2|ya|
If yb > 0, V − = 0, use V + only. If yb < 0, V + = 0, use V − only.
V ± = max(V ±j )

V factor for system is VF = V + + V −.
—————
speed of system (pg. 53)
F-number and numerical aperture

FNOeff =

∣∣∣∣ 1

2n′u′a

∣∣∣∣
for object at ∞: FNOeff ≡

f ′

n′CA
CA: entrance pupil clear aperture.
—————
numerical aperture (NA)
NA ≡ |n′ sinU ′a| (in image space)
n sinUa (in object space)
real ray angle U is the angle
paraxial angle u is tan θ (only u make paraxial eq. correct)
—————
Paraxial invariant, Lagrange Invariant
for 2 rays (y, nu), (y, nu), the quantity I = nuy − nuy is invariant
Lagrange invariant H ≡ nubya − nuayb
at object,image H = −nuayb
at pupils, stop H = nubya
at object, H = −nuayb
At image H = −n′u′Ay′b
Thus m =

y′b
yb

=
nua
n′u′a

H2 = n′2u′2a︸ ︷︷ ︸
E∝NA2

y′2b︸︷︷︸
∝Area

Diffraction theory - image of a point is given by the Airy pattern (Assuming circular pupil)

distance from peak to the first zero is the radius of ”airy disk”
−0.61λ

n′u′a
u′a usually negative.

Rayleigh criterion for resolution - 2 points ”barely resolved” when peak of 1 image falls on the first zero of

the other: 2 points separated by
0.61λ

|n′u′a|

It is of the form − Rλ

n′u′a

number of spots across an image diameter is Nspots =
2H

Rλ
—————
afocal - system with both object, image at infinity.

mafocal ≡
n′u′b
nub

=
ya
y′a

—————

with magnifier: u′b =
−yb,object

f

without magnifier: ub =
−yb,object
250mm
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mvisual =
250mm

−yb,object
=
n′

n
· 250mm

f
=

250mm

f
—————
”eye relief” - distance from last surface of system 2 entrance pupil of eye.
eye can focus b/w 250mm to ∞ entrance pupil of eye 2− 8mm
exit pupil of system and entrance pupil of eye should coincide and approx the same size. (if not, vignetting
restricts field of view, wastes light.)
lens system typically is 10-20 mm away from eye. (comfortable distance - ”eye relief”) (should be larger fror
some system - rifle scopes)
angular resolution of the eye is ∼ 1minute of arc ≈ 0.3milliradians
—————
Galilean telescope
for 2 thin lense in air, φ1, φ2, separated by distance t
system power is φsys = φ1 + φ2 − tφ1φ2

afocal system: φsys = 0
t = f1 + f2

mafocal = −f1

f2
= −fo

fe
positivev since f2 < 0
system has an internal exit pupil.
vignetting occurs almost immediately as object moves off axis, and system ha ssmall usable field of view.
—————
Keplerian telescope
f1 > 0, f2 > 0⇒ mafocal < 0
inverted imageexternal exit pupil, eye can be placed in pupil
field of view limited by vignetting caused by eyepiece or by field stop paced at the internal image
erecting prism 2 re–invert image.
—————
Newtonian telescope: parabolic mirror (perfect image for parallel rays along axis)
Cassegrain telescope is the reflecting equivalent of a telephoto lens. positive primary, negative secondary.
(parabolic primary, hyperbolic secondary)
Gregorian telescope - parabolic primary mirror of positive power, ellipsidal (positive) secondary mirror.
—————

|m| =
∣∣∣∣−z′f

∣∣∣∣ =
ftlens
fo

z′ tube length

system magnifying power is
tubelength · 250mm

fofe
infinity corrected: image at ∞, objective followed by tube lens followed by eyepiece.

−ftlens
fo

image projected onto detector plane is independent of object position. (if telecentric)
—————
—————
direction cosines
cos2 θx + cos2 θy + cos2 θZ = 1
define K,L,M to be the cos.
for point P−1 on plane z = z−1 corresponds to the point P on z = z0

x0 = x−1, y0 = y−1, z0 = −t′−1 + z−1

(x0, y0, z0) + ∆ < K,L,M >

intersect z =
1

2
c(x2 + y2 + z2)

c∆2 − 2∆[M − c(Kx0 + Ly0 +Mz0)] + c(x2
0 + y2

0 + z2
0)− 2z0 = 0

Let G = ∆[M − c(Kx0 + Ly0 +Mz0)], E = c(x2
0 + y2

0 + z2
0)− 2z0

solution of quad is then c∆ = G±
√
G2 − cE
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Take the ∆− solution.
multiply by conjugate over conjugate: then we have

∆ =
E

G+
√
G2 − cE

—————
snell’s law 3D
derivation:
path P, P ′ passes through PS that satisfy zs = f(xs, ys)

use fermat’s principle: OPL =

∫ P ′

P

nds = n
√

(x− xs)2 + (y − ys)2 + (z − zs)2+n′
√

(x′ − xs)2 + (y′ − ys)2 + (z′ − zs)2

Let d ≡
√

(x− xs)2 + (y − ys)2 + (z − zs)2, d′ ≡
√

(x′ − xs)2 + (y′ − ys)2 + (z′ − zs)2

Fermat’s requires
∂

∂xs
(nd+ n′d′) =

∂

∂ys
(nd+ n′d′) = 0

n(xs − x)

d
+
n(zs − z)

d

∂f

∂x

∣∣∣∣
xs,ys

+
n′(xs − x′)

d′
+
n′(zs − z′)

d′
∂f

∂x

∣∣∣∣
xs,ys

= 0

eq. apply to y too.

direction cosines: K =
xs − x
d

, L =
ys − y
d

,M =
zs − z
d

K ′ =
x′ − xs
d′

, L =
y′ − ys
d′

,M =
z′ − zs
d′

rewrite as (nK − n′K ′) + (nM − n′M ′) ∂f
∂x

∣∣∣∣
xs,ys

= (nL− n′L′) + (nM − n′M ′) ∂f
∂y

∣∣∣∣
xs,ys

= 0

Then
∂f

∂y
(1)− ∂f

∂x
(2) yields

(nK − n′K ′) ∂f
∂y

∣∣∣∣
xs,ys

− (nL− n′L′) ∂f
∂x

∣∣∣∣
xs,ys

= 0

normal vector to surface: N ≡
(
−∂f
∂x
,−∂f

∂y
, 1

)
(nr− n′r)×N = [0 0 0]T

Law of refraction is then (nr×N = n′r×N
n sin I = n′ sin I ′

N = (α, β, γ), |N| = 1
n′K ′ = nK + Γα (L, β), n′M ′ = nM − cΓz + Γ
Γ = n′ cos I ′ − n cos I

F (x, y, z) = z − 1

2
c(x2 + y2 + z2)

N = (−cx,−cy, 1− cz)
cos I = r ·N =

√
G2 − cE

n′ cos I ′ =
√
n′2 − n2(1− cos2 I)

—————
dispersion
color: blue, yellow, yellow, red
element: hydrogen, helium, sodium , hydrogen
name: F, d, D, C
λ(nm) : 486.1, 587.6, 589.3, 656.3

dispersion relevant to optical design:
φF − φC

φd
=

∆φ

φ

’reciprocal dispersive power’ =
φd

φF − φC
= νd =

nd − 1

nF − nC
—————
abbe ν number

νd ==
φd

φF − φC
=

nd − 1

nF − nC
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—————
517646 - code for abbe prism
first 3 number describe the index, last 3 describe dispersion. .
dispersion 64.2
—————
longitudinal chromatic aberration (thin lenses in air)

∆φ = φF − φc =

(
l′c − l′F
l′F l
′
c

)
−
(
lc − lF
lF lc

)
for small aberrations lclF ≈ l2d, l′cl

′
F ≈ l′2d

⇒ ∆φ =
φ

ν
=
l′c − l′F
l′2

− lc − lF
l2

(no subscript ⇒ d line)
define ∆l ≡ lF − lc,∆l′ = l′F − l′c
multiply by −y2

a, since u2
a =

y2
a

l2
, u′2a =

y′2A
l′2

then −y
2
aφ

ν
= ∆l′(u′2a )−∆l(u2

a)

happen at each lenses: summation.
∆l′ = ∆l for nex lens, all terms cancel but first, and last∑
lenses

(
−y2

ajφj

νf

)
= L′CHu

′2
a︸ ︷︷ ︸

image space

−LCHu
2
a︸ ︷︷ ︸

object

normally, one has unaberrated object, so LCH = 0, then wehave L′CH = − 1

u′2a

∑
lenses

y2
ajφj

νj
—————
thin achromat:

φ1 =
φsysν1

ν1 − ν2

φ2 =
φsysν2

ν2 − ν1
=
−φ1ν2

ν1

—————
transverse chromatic Aberration for thin lens in air

y′b,F − y′b,C = T ′CH =
1

u′a

yaybφ

ν

T ′CH =
1

u′a

∑
lenses

yajybjφj
νj

T ′CH = −u′a,sys
(
ybj
yaj

)
L′CHj

—————

No primary axial color if
∑ y2

aφ

ν
= 0

no primary lateral color if
∑ yaybφ

ν
= 0

no secondary axial color if
∑ y2

aPφ

ν
= 0

no secondary lateral color if
∑ yaybPφ

ν
= 0

—————
secondary spectrum

Px,y ≡
nx − ny
nF − nC

Pd,F =
nd − nF
nF − nc

—————
Monochromatic aberrations (misnomer)
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h ≡=
y object position

max object height

p ≡ radial pupil position

pupil radius
0 ≤ h, ρ ≤ 1
aberration are functions of h, ρ, cosφ
any particular transverse error

⇀
ε = (εx, εy)

Define wavefront aberration function to bee the optical path difference (OPD) between the actual wavefront
and the reference sphere, then the physical separation between the two surfaces in image space is geven by
W (h, ρ, φ)

n′
. measured along the aberrated ray.

W (+)⇒ actual wavefront leads the reference sphere.
E′ : center of exit pupil has ideal chief ray E′P ′0 ≡ R.
The coordinates are Q0(x, y, z), P ′(εx, y

′
0 + εy), P ′0(0, y′0).

direction cosine of ray Q0 → Q→ P ′.

final result: εx =
1

n′u′a

∂W

∂ρx
, εy =

1

n′y′a

∂W

∂ρy
—————
W must be rotational invariant
general form of W is W (h, ρ, cosφ) =

∑
Wijkh

iρj cosk φ

symmetry condition: i+ j must be even.
n = i+ j define the net power of the length component, is called the order of the aberration.

transverse ray aberrations are ∝ ∂W

∂p
. So ray aberrations are one order lower - odd.

3rd order - Seidel aberrations. or primary aberration. 5th as secondary. 7th as tertiary...
this class only concerned with order up to 4:
W (h, ρ, cosφ) = W000+W020ρ

2+W111hρ cosφ+W200h
2+W040ρ

4+W131hρ
3 cosφ+W220h

2ρ2+W222h
2ρ2 cos2 φ+

W311h
3ρ cosφ+W400h

4

Wijk are called wavefront aberration coeff. (unit of wavelength)
(εx, εy) usually given in length unit.
transverse ray aberration dont depend on the h2 terms.
—————
piston error (is usually ignored) are W (h2) = W000 +W200h

2 + ...
at any object point, these terms only add a constant path error across the pupil.
—————
defocus

εy =
2W020ρy
n′u′a

, εz =
−1

ρyu′a
εy

looking at only the W020ρ
2 term, we have εz =

−2W020

n′u′2a
εz = −8n′W020FNO

2

W020 =
−εz

8n′FNO2
—————
Rayleigh’s criterion for diffraction limited

|Wmax| ≤
λ

4
.

applying to defocus, Wmax = W020

εz = ±2λ0FNO
2

|εz| ≤ |2λ0FNO
2|

—————
aberration analysis
trace ray fans (Y-fan, X-fan).
plot εyvs.ρy, εxvs.ρx.
—————
a planar object focus on a curve surface.
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Petzval sum -
1

n′Rp
=
∑

c∆

(
1

n

)
conventional case of a plane object, we denote the image space value of R′ as Rpfor ’Petzval radius’.
W = Wph

2ρ2.

εz =
y′2

2Rp
=
−2Wph

2

n′u′2a
=

1

2
n′
∑

c∆

(
1

n

)
y′2b h

2.

Wp = −1

4
H2
∑

c∆(n−1)
—————
y is the height of the surface
s is the s displacement of the surface at y = y

notice that s =
y2

2r
O(4), the s4 terms in W4th order gives 6th order, so we can ignore s2.

W4th order =
1

8
(y2 + s2)2n2

((
1

n′l′
− 1

nl

)(
1

l
− 1

r

)2
)

=
1

8
y4n2

((
1

n′l′
− 1

nl

)(
1

l
− 1

r

)2
)

W4th order = 0 if
1) l = r = l′ (object centered surface
2) y = 0 object at the surface (like field lens)
3) nl = n′l′ (aplanatic point)
–

W6th order = − 1

16
(y2 + s2)3n3

((
1

n′2l′2
− 1

n2l2

)(
1

l
− 1

r

)3
)

y4 = y4
T +O(6) = y4

T = (ρya)4

W4th order =
1

8
n2ya

(
∆

(
−ua
n

)
(−ua + α)2

)
ρ4

angle of incidence of a-ray: ia = ua − α
Let s1 ≡ −

∑
surfaces

A2ya∆
(ua
n

)
, A ≡ nia

⇒W4th order = W040ρ
4 ⇒W040 ≡

1

8
s1

transverse ray aberration:
εy = σ1(ρ3

y + ρ2
xρy), εx = σ1(ρ3

x + ρ2
yρx)

where σ1 ≡
4@040

n′u′a
=

s1

2n′u′a
terminology: σ1 < 0: undercorrected spherical aberration
σ1 > 0: over corrected spherical aberration.
—————
page 148 image
—————
coma
W131 hρy︸︷︷︸

∆m

ρ2

may be thought of as a magnification error that varies quadraticall with zone in the pupil.

coma ∝
∑

ABya∆
(ua
n

)
vanishes if
1) ∆

(ua
n

)
= 0 ( aplanatic)

ya = 0 ( object at surface
3) B = 0 (pupil cenered srface
4) A = 0 (object-centered surface.
system ( and a-ray and b-ray) is symmetric
transverse ray aberration for coma: εy = σ2h(3ρ2

y + ρ2
x), εx = σ2h(2ρxρy)

where σ2 ≡
W131

n′u′a
=

s2

2n′u′a

12



εy = σ2hρ
2(2 + cos 2φ), εx = σhρ2 sin 2π

center of circle: 2σ2hρ
2 from paraxial image point

r = σ2hρ
22.

Aplanatism is the corresponding stationarity condition when the pencil of rays hass zero aberration at he
original object point. Aplanatic - freedom from both spherical aberration and coma.

optical cosine rule: n′
dr′

dr
cos θ′ − n cos θ = c

abbe sine condition
cosine rule for θ =

π

2
= θ′:

n sinU

n′ sinU ′
= m

cosine rule for cosU = cosU ′ = 1 (both U,U ′ approaches 0, from (-), (+))

⇒ mL =
n

n′

(
sin
(
U
2

)
sin
(
U ′

2

))2

known as Herschel condition.

mL =
n′

n
m2 ⇒ m =

n sin
(
U
2

)
n′ sin

(
U ′

2

)
but incompatible with the abbe sine condition unless U = U ′, while implies that m = mL =

n

n′
—————
W = W222h

2ρ2
y

εx = 0, εy = 2σ3h
2ρy, σ3 =

S3

2n′u′a
—————
field curvature
W = W220h

2ρ2

—————
Astigmatism, field curvature, defocus
W = W020ρ

2 +W222h
2ρ2 cos2 φ+W220h

2ρ2

εy = (−u′aεz + (3σ3 + σ4)h2)ρy
εx = (−u′aεz + (σ3 + σ4)h2)ρx.
paraxial focus: εz = 0,

Sagittal focus: εx = 0. (εz =
(σ3 + σ4)h2

u′a
, εy = 2σ3h

2ρy (length 4σ3h
2))

Tangential focus: εy = 0. (εz =
(3σ3 + σ4)h2

u′a
, εy = −2σ3h

2ρx (length 4σ3h
2))

Medial focus: circle: εz =
2(σ3 + σ4)h2

u′a
εy = σ3h

2ρy, εx = −σ3h
2ρx

r = 2σ3h
2

—————
astimatism depends on incidence angles of ray as well as the powers and indices.
—————
Distortion
transverse ray error

εy =
s5

2n′u′a
h3 = σ5h

3

εx = 0

distortion
εy
y′

in percent.

εy
hy′b

=
σ5h

2

y′b
in percentage.

—————
S5 vaishes when
1) B = 0,
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2) If the system (a,b ray) is symmetric.
distortion usually classified by considering the image of a square grip:
for σ5 < 0, we have ’barrel distortion’
(looking like a front square grip of a sphere)
for σ5 > 0, we have ’pincushion distortion’
(looking like a back square grip of a sphere)
—————
Eccentricity
E defined as
HE =

yb
ya

Ej+1 − Ej =
t′j

n′jyajyaj+1
—————
Stop-shift effec.

E =
yb
Hya

, E = 0 at stop.

shifting the stop by ∆E (Old stop E changes from 0 to ∆E =
∆yb
Hya

), the general result is that ∆E is an

invariant quantity throughout the system.

∆S = H∆E =
∆yb
ya

B

A
= H

(
E +

1

Aya

)
changing E by ∆E yields the change:

B

A
= H

(
E + ∆E +

1

Aya

)
The ratio

B

A
occurs in sevveral relationship:

s2 =
B

A
s1, s3 =

(
B

A

)2

s1, s5 =
B

A
(s3 + s4), T ′CH = −u′a

B

A
L′CH

—————

stop shift eqs: ∆S = H∆E =
∆yb
ya

δs1 = 0
δs2 = (H∆E)s1

δs3 = 2H∆Es2 + (H∆E)2s1

δs4 = 0
δs5 = H∆E(3s3 + s4) + 3(H∆E)2s2 + (H∆E)3s1

δLCH l = 0
δT ′CH = −u′a ·H∆E · L′CH

—————
—————
thin lens quantities
shape factor or bending factor β

β =
c1 + c2
c1 − c2

conjugate factor or magniication ffactor γ

γ =
ua1 + u′a2

ua1 − u′a2

=
m+ 1

m− 1
object at infinity ua1 = 0⇒ γ = −1
—————
thin lens aberrations (page 176,177 for exact expressions)
S1 ∝ β2, γ2

S2 ∝ β, γ
S3 = H2φ
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S4 =
H2φ

n
S5 = 0
page 177
aberrations in terms of β, γ.
—————
Aspheric contributions to the seidel aberrations
putting a coating on a spheric surface to make it aspheric
a = κc3y4

a∆n (conic)
a = 8dy4

a∆n (polynomial)
δS1 = a

HE =
yb
ya

δS1 = a

δS2 =
yb
ya
a

δS3 =

(
yb
ya

)2

a

δS4 = 0

δS5 =

(
yb
ya

)3

a

no effect on Petzval curvature S4, or first order chromatic aberrations (L′CH , Y
′
CH)

—————
if we want 0 aberration on that surface for S1: S1 + δS1 = 0
—————
∆
(ua
n

)
= 0, nl = n′l′ ⇒ S1 = S2 = S3 = 0

⇒ m =
nl′

n′l
=
n2

n′2
—————
A = nia = 0⇒ S1 = S2 = 0

m =
nl′

n′l
=

n

n′
For ’aplanatic thin lens’,

if n = ng(index of glass), n′ = 1⇒ m = mapl.srf. ·mobj.cent.srf. =

(
n1

n′1

)2(
n2

n′2

)
=

1

ng
m > 0⇒ either image/object is virtual.
—————
strong doublet - zonal aberration
—————
Negative ’aplanats’
first surface object centered followed by aplanatic

m = mobj.cent. ·mapl. =

(
n1

n′1

)(
n2

n′2

)2

= ng

—————
pupil centered surface: B = 0
⇒ Sn that depends on B equals 0. (coma, astigmatism, distortion vanish)
SA, Petz. curvature remains.
—————
Schmidt camera
B = 0, with an additional aspheric surface located at aperture stop )introduces only spherical).
Aspheric surface counteract SA, so only Petzval remains.
image surface is concentric with stop
–
but sphere introduces SA independent of λ, while that of plate varies with dispersion curve of glass. The
spherochromatism (εy vs. ρy) looks cubic (F (λ = 486.1nm) curve looks like x3, C (λ = 656.3nm) curve
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looks like −x3).
to counteract this, small amount of power is added to the corrector plate, to contribute axial color. (surface
looks like, ray fans looks like pg. 195)
—————
refractive Schmidt
surface 1 aspheric, but no power. surface 2 concentric with stop (B = 0).
but system suffers axial color.
–
buried surface. (pg. 196)
thick glasses split into two with buried surface in between.
nd = n′d on both sides of buried surface (so B still = 0 at surface 2), but different ν.
—————
Field flatteners
thin (−) lens at image plane (ya = 0 ⇒ SA, coma, astigmatism vanish). (small distortion)
purpose of this lens: decrease Petzval sum (to flatten the field).
(real field flattener is slightly away from image)
–
field flattener can also be placed at intermediate image (like field lens, but (−) power)
eye relief ↑, field of view ↓
—————
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