6-1. We can answer the guestions posed in this problem if we find the intensity point-spread function,
Fromm Eqs. (6-4) and (6-5), we know that the intensity point-spread function of an incoherent system
is the squared magnitude of the (properly scaled) Fourier transform of the exit pupil illumination. The
amplitude transmittance of the exit pupil in this case can be written
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where r 3 o 1 y?. The Fourier transform of this expression is

. . ! Jy (el
Fltalz.y)} _[\r?) ETJJI * 2eas(ms fx ).

where p = /% + [{. Taking the squared magnitude of this expression, using the identity cos® f
%: 1+ cos28), and introducing the scaling parameters appropriate for the optical Fourier transform, we
obtain the following expression for the intensity point-spread function (under the assumption that the
intensity of the wave at the exit pupil is unity):

I v) = |fe(u, v)* — D = l

We can now answer the specific questions of the problem:
(a) The spatial frequency of the fringe is clearly given by
o = o—
Az,
Note that the fringe frequency increases as the separation between the two apertures increases.

(b} The envelope of the fringe pattern is seen o be an Airy pattern of the form

where the scaling factor preceding the Airy pattern has been neglected.

chap 6:

thin lens: enter and exit at approx the same coordinates.

wavefront delay by o thickness at that point A(x,y)

suppose maximum distance (axis) Ag. then total phase delay suffer by wave at (x,y) passing through lens is
d)(x’y) = knA(x,y) + k(AO - A(l‘,y))
multiplicative phase transformation ¢;(z,y) =
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planar input, normally incident, monochromatic plane wave of amp A: disturbance incident:

Ul(‘ray) = AtA(l’,y)



using Fresnel diffraction formula, with z = f:
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complex amp distribution of the field in focal plane is F-D pattern of field incident on lens. (with fxy =
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Intensity is then
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For transparency (distance d in front of f) behind the lens, the field distribution is
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U,(&,,n) - complex field immediately behind the object. U;(u,v) - field distribution distance zo behind the

lens.
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high quality images: U; as similar as possible to U,.
h(“ﬁ”;fﬂ?) ~ K6<u - M§7’U - Mn)

where K complex constant, M magnification.



Let object be a ¢ function at coordinates (&, n)
the incident on lens appear as spherical wave from (&, 7)
paraxial: Up(z,y) = _ie o [(@—€)*+y—n)?]

1\z1
passage through lens: Uj(z,y) = Ui(z, y)P(x,y)e_i%($2:y2)
then propagate over 2z
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lens law (eliminate x,y phase): — + — — =~ =0
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(u,v) phase ignored under these 2 conditions:

1) it is the intensity distribution in the image plane that is of interest (phase goes away for intensity).

2) image field distribution is of interest, but image is measured on spherical surface, centered at point where
the optical axis pierces the thin lens, and of radius zs.

(&,m) phase neglected under 3 diff conditions:

1) object exists on surface of sphere of radius z; centered on the point (def. z;) where optical axis pierces
lens.

2) object illuminated by spherical wave converging towards z;.

3) phase changes by amount < 1 radian within region of object.
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ideal image
according 2 geometrical optics, image and object would be related by
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Transfer function that produce this result is h(u,v;€,n) = i (5 %, n— %)
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object image -relationship becomes
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ideal image produced by a diffraction-limited optical system (sys free from aberration) is a scaled and inverted
version of object.
effect of diffraction is to convolve tat ideal image with the Fraunhofer diffraction pattern of the lens pupil.

ABCD matrix
The field distribution is
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Frequency analysis of optical imaging system

partial coherence.

coherent imaging system is linear in complex amplitude.

incoherence imaging system is linear in intensity, ir of system is squared magnitude of the amp ir.
polychromatic wave w(P,t). suppress all (+) freq components of Fourier spectrum, and double its (=) freq
components:

u_(Pt) = U(P,t)e 27t

where 7 is the mean freq of optical wave.

imaging
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from exit pupil 2 image.
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image of perfect imaging system: Uy(&,7) = MUO %, ]\Z)
Then field at image is convolution: U;(u,v) = Uy * h

narrowband: U;(u,v;t) :// h(u—& v — ﬁ)Ug(g,f];t — T)dédﬁ

where 7 is time delay of propagation from
image intensity is the time average of the instantaneous intensity:
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ir is nonzero over small region about ideal image point.
71 — T &= 0 for narrowband. drop 71,72 in integral.
coherent, incoherent
incoherent: 0, > 0, + 0,
coherent: 0, < 0,
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OTF (normalized transfer function — Rayleigh’s theorem — substitute to make it symmetric) is normalized
autocorrelation function of the amplitude transfer function -

cutoff frequency fo=

normalized frequency spectra of I Go(fx, fv)

normalized transfer function — H(fx, fy)

properties of OTF

H(0,0) =
H(_fXa_fY): (vafY)
[H(fx, fr)] < H(0,0)]

OTF examples



area of overlap

H(fx, fr) = total area
square aperture = <§}{) A (2f}/>
0 0
w
fo= N,
2 -1 P P P 2
circular aperture H(p)=< = <COS (%) T\ (%) > P =200
0 otherwise
W
po = /\721

complex amplitude transmittance of imaginary phase-shifting plate (generalized pupil function)

P(z,y) = P(z,y)e™ W)

if system free of aberration, exit pupil would be filled by perfect spherical wave converging toward ideal
image point.

Gaussian reference sphere.

ir is F.T. of pupil function

amplitude transfer function is

H(fx, fy)=PAzfx, /\zify)eikW(AzifX,Azify)

Azifx Az fy Az fx Az fy
5 Y 2,Px+2,y+2

area of overlapA(fx, fy) = area of P (CE
aberrations  H(fx, fy) =

aberration never increase MTF (modulus of OTF).

severe aberration can reduce high-frequency portions of OTF to such extent that effective cut off is much
lower than the diffraction-limited cutoff.

path-length error
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when aberrations of any kind are severe, the geometrical optics predictions of the intensity point-spread
function may be fourier transformed to yield a good approx to the OTF of system.

incoherent L=h*el, = h* U,
coherent I = |ha U,

autocorrelation X(fx7fy) * X (fx, fY) :// X(pa QX" (p— fx,q— fY)deq

incoherent F{IL} = [H x H|[G, * G|
coherent I; =HGy,xHG,



where G, is spectrum of U, and H is amplitude transfer function.

psf = ift of otf (normalize not necessary?)

The point spread function (PSF) describes the response of an imaging system to a point source or point
object. A more general term for the PSF is a system’s impulse response.

When aberrations of any kind are severe, the geometrical optics predictions of the intensity psf may be F.T.
to yield a good approx to the OTF of the system. (diffraction play negligible role when severe aberrations
are present)

coherent vs. incoherent

object amp in coherent case, object intensity in incoherent case.

intensity point-spread function of an incoherent system is the squared magnitude of the (properly scaled)
Fourier transform of the exit pupil illumination.

abbrevation

ir - impulse response.

F.T. - fourier transform

OTF - optical transfer function

2 point resolution
Rayleigh criterion of resolution. 2 incoherent point source by diffraction limited system with circular pupil.
Airy first zero has peak of second Airy.

0 =0.61

sin 0

speckle effect
problem of speckle effect observed with highly coherent illumination.
size of speckles roughly the size of a resolution cell on the image (or object).

super-resolution, or bandwidth extrapolation.

in absence of noise.

Theorem 1: The 2D F.T. of a spatially bounded function is an analytic function in the (fx, fy) plane.
Theorem 2: If an ana function in the (fx, fy) plane is known exactly in an arbitrarily small (buy finite)
region of that plane, then the entire function can be found (uniquely) by means of analytic continuation.



